Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.

نویسندگان

  • Francisco B Pereira
  • Aloia Romaní
  • Héctor A Ruiz
  • José A Teixeira
  • Lucília Domingues
چکیده

The search of robust microorganisms is essential to design sustainable processes of second generation bioethanol. Yeast strains isolated from industrial environments are generally recognised to present an increased stress tolerance but no specific information is available on their tolerance towards inhibitors that come from the pretreatment of lignocellulosic materials. In this work, a strategy for the selection of different yeasts using hydrothermal hydrolysate from Eucalyptus globulus wood, containing different concentrations of inhibitors, was developed. Ten Saccharomyces cerevisiae and four Kluyveromyces marxianus strains isolated from industrial environments and four laboratory background strains were evaluated. Interestingly, a correlation between final ethanol titer and percentage of furfural detoxification was observed. The results presented here highlight industrial distillery environments as a remarkable source of efficient yeast strains for lignocellulosic fermentation processes. Selected strains were able to resourcefully degrade furfural and HMF inhibitors, producing 0.8g ethanol/Lh corresponding to 94% of the theoretical yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

BACKGROUND Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects hav...

متن کامل

Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution

BACKGROUND It remains a challenge for recombinant S. cerevisiae to convert xylose in lignocellulosic biomass hydrolysates to ethanol. Although industrial diploid strains are more robust compared to laboratory haploid strains, however, industrial diploid S. cerevisiae strains have been less pursued in previous studies. This work aims to construct fast xylose-fermenting yeast using an industrial ...

متن کامل

Pretreatments and Factors Affecting Saccharification and Fermentation for Lignocellulosic Ethanol Production

Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for sustainable energy production and has the potential to be a valuable substitute. Various pretreatment techniques change the physical and chemical structures of the lignocellulosic biomass and improve the hydrolysis rate. The cost of ethanol production from lignocellulosic material is relatively...

متن کامل

A xylose-fermenting yeast hybridized by intergeneric fusion between Saccharomyces cerevisiae and Candida intermedia mutants for ethanol production

Background: Bioethanol production from lignocellulosic biomass, in particular xylose, is currently of great concern, given the abundance of this sugar in the world, because Saccharomyces cerevisiae, which is widely used for bioethanol production, is unable to naturally ferment xylose. The aim of this study was to obtain a novel yeast capable of stably producing ethanol from biomass containing x...

متن کامل

Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production

Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors—including toxic by products from biomass pretreatment and poor fermentation of xylose and other pentose sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2014